Galibarov PE, Prendergast PJ, & Lennon
AB. 2010. A method to reconstruct pa-tient-
specific proximal femur surface mod-els
from planar pre-operative radiographs.
Medical Engineering and Physics, 32(10),
1180–1188. https://doi.org/10.1016/j.
medengphy.2010.08.009
Gajny L, Ebrahimi S, Vergari C, Angelini E,
& Skalli W. 2019. Quasi-automatic 3D re-construction
of the full spine from low-dose
biplanar X-rays based on statistical
inferences and image analysis. European
Spine Journal, 28(4), 658–664.https://
doi.org/10.1007/s00586-018-5807-6
Goswami B, & Kr Misra S. 2015. 3D Model-ing
of X-Ray Images: A Review. Internation-al
Journal of Computer Applications, 132(7),
975–8887.
Grant MJ & Booth A. 2009. A typology of
reviews: An analysis of 14 review types
and associated methodologies. In Health
Information and Libraries Journal 26(2),
91–108. https://doi.org/10.1111/j.1471-
1842.2009.00848.x
Grigorieva I, Vyunnik N, & Kolpinsky G.
2018. The Construction of an Individual-ized
Spinal 3D Model Based on the X-ray
Recognition. Conference of Open Innova-tion
Association, FRUCT, 2018-Novem-ber,
143–149. https://doi.org/10.23919/
FRUCT.2018.8588090
He K, Gkioxari G, Dollar P, & Girshick R.
2017. Mask R-CNN. Proceedings of the
IEEE International Conference on Com-puter
Vision, 2017-October, 2980–2988.
https://doi.org/10.1109/ICCV.2017.322
Hosseinian S & Arefi H. 2015. 3D recon-struction
from multi-view medical
X-ray images - Review and evaluation
of existing methods. International Ar-chives
of the Photogrammetry, Remote
Sensing and Spatial Information Sci-ences
- ISPRS Archives 40(1W5), 319–
326. https://doi.org/10.5194/isprsar-chives-
XL-1-W5-319-2015
Hui SCN, Pialasse JP, Wong JYH, Lam TP, Ng
BKW, Cheng JCY, & Chu WCW. 2016. Ra-diation
dose of digital radiography (DR)
versus micro-dose x-ray (EOS) on patients
with adolescent idiopathic scoliosis: 2016
SOSORT- IRSSD “John Sevastic Award”
Winner in Imaging Research. Scoliosis and
Spinal Disorders, 11(1), 1–8. https://doi.
org/10.1186/s13013-016-0106-7
Humbert L, De Guise JA, Aubert B, Godbout B
& Skalli W. 2009. 3D reconstruction of the
spine from biplanar X-rays using paramet-ric
models based on transversal and lon-gitudinal
inferences. Medical Engineering
and Physics 31(6), 681–687. https://doi.
org/10.1016/j.medengphy.2009.01.003
Ilharreborde B, Steffen JS, Nectoux E, Vital
JM, Mazda K, Skalli W & Obeid I. 2011.
Angle measurement reproducibility using
EOSThree-dimensional reconstructions in
adolescent idiopathic scoliosis treated by
posterior instrumentation. Spine 36(20)
E1306-1313. https://doi.org/10.1097/
BRS.0b013e3182293548
Kadoury S. 2015. Three-dimensional spine
reconstruction from radiographs. Lec-ture
Notes in Computational Vision and
Biomechanics, 18, 159–191. https://doi.
org/10.1007/978-3-319-12508-4_6
Kadoury S, Cheriet F & Labelle H. 2009.
Personalized X-Ray 3-D Reconstruction
of the Scoliotic Spine From Hybrid Sta-tistical
and Image-Based Models. IEEE
Transactions on Medical Imaging 28(9),
1422–1435. https://doi.org/10.1109/
TMI.2009.2016756
Kadoury S, Labelle H, & Parent S. 2016. Post-operative
3D spine reconstruction by nav-igating
partitioning manifolds. Medical
Physics, 43(3), 1045–1056. https://doi.
org/10.1118/1.4940792
Kasten Y, Doktofsky D, & Kovler I. 2020. End-
To-End Convolutional Neural Network for
3D Reconstruction of Knee Bones From
Bi-Planar X-Ray Images. ArXiv. https://
doi.org/10.1007/978-3-030-61598-7_12
Kim H, Lee K, Lee D, & Baek N. 2019. 3D Re-construction
of Leg Bones from X-Ray Imag-es
using CNN-based Feature Analysis. ICTC
2019 - 10th International Conference on ICT
Convergence: ICT Convergence Leading the
Autonomous Future, 669–672. https://doi.
org/10.1109/ICTC46691.2019.8939984
Klima O, Kleparnik P, Spanel M, & Zemcik P.
2015. GP-GPU ACCELERATED INTENSI-TY-
BASED 2D/3D REGISTRATION PIPE-LINE.
Kumar S, Nayak KP, & Hareesha KS. 2016.
Combined SCP and geometric reconstruc-tion
of spine from biplanar radiographs.
Advances in Intelligent Systems and
Computing, 437, 215–225. https://doi.
org/10.1007/978-981-10-0451-3_21
Laporte S, Skalli W, de Guise JA, Lavaste F,
& Mitton D. 2003. A biplanar reconstruc-tion
method based on 2D and 3D con-tours:
Application to the distal femur.
Computer Methods in Biomechanics and Bio-medical
Engineering, 6(1), 1–6. https://doi.
org/10.1080/1025584031000065956
Levac D, Colquhoun H & O’Brien KK. 2010.
Scoping studies: Advancing the method-ology.
Implementation Science 5(1), 69.
https://doi.org/10.1186/1748-5908-5-69
Levy AR, Goldberg MS, Mayo NE, Hanley JA
& Benoit P. 1996. Reducing the lifetime
risk of cancer from spinal radiographs
among people with adolescent idiopath-ic
scoliosis. Spine 21(13), 1540–1548.
https://doi.org/10.1097/00007632-
199607010-00011
Lewis SJ, Gandomkar Z & Brennan PC. 2019.
Artificial Intelligence in medical imaging
practice: looking to the future. Journal of
Medical Radiation Sciences 66(4), 292–
295. https://doi.org/10.1002/jmrs.369
Lin EC. 2010. Radiation risk from medical
imaging. Mayo Clinic Proceedings 85(12),
1142–1146. https://doi.org/10.4065/
mcp.2010.0260
Lundervold AS & Lundervold A. 2019.
An overview of deep learning in medi-cal
imaging focusing on MRI. Zeitschrift
Fur Medizinische Physik, 29(2), 102–
127. https://doi.org/10.1016/j.zeme-di.
2018.11.002
Mitton D, Landry C, Véron S, Skalli W, La-vaste
F, & De Guise JA. 2000. 3D recon-struction
method from biplanar radiogra-phy
using non-stereocorresponding points
and elastic deformable meshes. Medical
and Biological Engineering and Computing,
Kliininen Radiografiatiede 2021 21
/j
/s00586-018-5807-6
/j.1471-
/
/ICCV.2017.322
/isprsar-chives-
/doi
/doi
/doi
/doi
/doi
/doi
/doi
/
/
/978-3-030-61598-7_12
/1748-5908-5-69
/00007632-
/jmrs.369
/
/j.zeme-di