REFERENCES
Arksey H, O’Malley L. 2005. Scoping studies: To-wards
a methodological framework. Interna-tional
Journal of Social Research Methodolo-gy:
Theory and Practice 8(1), 19–32. https://
doi.org/10.1080/1364557032000119616
Aubert B, Vazquez C, Cresson T, Parent S &
De Guise J. 2016. Automatic spine and
pelvis detection in frontal X-rays using
deep neural networks for patch displace-ment
learning. Proceedings - Interna-tional
Symposium on Biomedical Imag-ing
2016-June, 1426–1429. https://doi.
org/10.1109/ISBI.2016.7493535
Aubert B, Vazquez C, Cresson T, Parent S &
De Guise JA. 2019. Toward Automated 3D
Spine Reconstruction from Biplanar Ra-diographs
Using CNN for Statistical Spine
Model Fitting. IEEE Transactions on Med-ical
Imaging 38(12), 2796–2806. https://
doi.org/10.1109/TMI.2019.2914400
Aubert B, Vidal PA, Parent S, Cresson T,
Vazquez C, & De Guise J. 2017. Convo-lutional
neural network and in-painting
techniques for the automatic assessment
of scoliotic spine surgery from biplanar ra-diographs.
Lecture Notes in Computer Sci-ence
(Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes
in Bioinformatics), 10434 LNCS, 691–
699. https://doi.org/10.1007/978-3-319-
66185-8_78
Aubin CÉ, Dansereau J, Parent F, Labelle H,
& De Guise JA. 1997. Morphometric eval-uations
of personalised 3D reconstruc-tions
and geometric models of the human
spine. Medical and Biological Engineering
and Computing, 35(6), 611–618. https://
doi.org/10.1007/BF02510968
Baka N, Kaptein BL, de Bruijne M, van Wal-sum
T, Giphart JE, Niessen WJ & Le-lieveldt
BPF. 2011. 2D-3D shape recon-struction
of the distal femur from stereo
X-ray imaging using statistical shape
models. Medical Image Analysis 15(6),
840–850. https://doi.org/10.1016/j.me-dia.
2011.04.001
Bakhous C, Vazquez C, Cresson T, Parent S,
& Guise J De. 2019. A fully automatic 3d
20 Kliininen Radiografiatiede 2021
reconstruction of scoliotic spine from bi-planar
radiographs in a suspension frame-work.
Proceedings - International Sympo-sium
on Biomedical Imaging, 2019-April,
1162–1165. https://doi.org/10.1109/IS-BI.
2019.8759436
Baudoin A, Skalli W, de Guise JA, & Mitton D.
2008. Parametric subject-specific model for
in vivo 3D reconstruction using bi-planar
X-rays: Application to the upper femoral
extremity. Medical and Biological Engineer-ing
and Computing, 46(8), 799–805. https://
doi.org/10.1007/s11517-008-0353-8
Benameur S, Mignotte M, Labelle H & De
Guise JA. 2005. A hierarchical statistical
modeling approach for the unsupervised
3-D biplanar reconstruction of the scoliot-ic
spine. IEEE Transactions on Biomedical
Engineering, 52(12), 2041–2057. https://
doi.org/10.1109/TBME.2005.857665
Benameur S, Mignotte M, Parent S, Labelle
H, Skalli W, & De Guise J. 2003. 3D/2D
registration and segmentation of scoliot-ic
vertebrae using statistical models. Com-puterized
Medical Imaging and Graphics,
27(5), 321–337. https://doi.org/10.1016/
S0895-6111(03)00019-3
Bromiley PA, Adams JE, & Cootes TF. 2015.
Localisation of Vertebrae on DXA Images
using Constrained Local Models with Ran-dom
Forest Regression Voting.
Chaibi Y, Cresson T, Aubert B, Hausselle J,
Neyret P, Hauger O, de Guise JA, & Skalli
W. 2012. Fast 3D reconstruction of the
lower limb using a parametric model and
statistical inferences and clinical measure-ments
calculation from biplanar X-rays.
Computer Methods in Biomechanics and
Biomedical Engineering, 15(5), 457–466.
https://doi.org/10.1080/10255842.2010.
540758
CDC (Centers for Disease Control and
Prevention). 2015. Radiation Studies:
ALARA. https://www.cdc.gov/nceh/radia-tion/
alara.html
Chen CC & Fang YH. 2020. Using Bi-pla-nar
X-Ray Images to Reconstruct the
Spine Structure by the Convolution Neu-ral
Network. IFMBE Proceedings, 74, 80–
85. https://doi.org/10.1007/978-3-030-
30636-6_11
Chu C, Belavý DL, Armbrecht G, Bansmann
M, Felsenberg D, & Zheng G. 2015. Fully
Automatic Localization and Segmentation
of 3D Vertebral Bodies from CT/MR Im-ages
via a Learning-Based Method. PLOS
ONE, 10(11), e0143327. https://doi.
org/10.1371/journal.pone.0143327
Delin C, Silvera S, Bassinet C, Thelen P, Re-hel
JL, Legmann P, & Folinais D. 2014.
Ionizing radiation doses during lower
limb torsion and anteversion measure-ments
by EOS stereoradiography and
computed tomography. European Journal
of Radiology, 83(2), 371–377. https://doi.
org/10.1016/j.ejrad.2013.10.026
Dill T. 2008. Contraindications to magnetic
resonance imaging. Heart, 94(7), 943–948.
https://doi.org/10.1136/hrt.2007.125039
Dixit S, Pai VG, Rodrigues VC, Agnani K, &
Vaishna Priyan SR. 2019. 3D Reconstruc-tion
of 2D X-Ray Images. CSITSS 2019
- 2019 4th International Conference on
Computational Systems and Informa-tion
Technology for Sustainable Solution,
Proceedings. https://doi.org/10.1109/
CSITSS47250.2019.9031045
Ebrahimi S, Gajny L, Skalli W, & Angelini E.
2019. Vertebral corners detection on sag-ittal
X-rays based on shape modelling,
random forest classifiers and dedicated
visual features. Computer Methods in Bio-mechanics
and Biomedical Engineering:
Imaging and Visualization, 7(2), 132–144.
https://doi.org/10.1080/21681163.2018.
1463174
EFRS (The European Federation of Radiog-rapher
Societies), & ISRRT (International
Society of Radiographers and Radiolog-ical
Technologists). 2020. Artificial In-telligence
and the Radiographer/Radio-logical
Technologist Profession: A joint
statement of the International Society
of Radiographers and Radiological Tech-nologists
and the European Federation
of Radiographer Societies. Radiography,
26(2), 93–95. https://doi.org/10.1016/j.
radi.2020.03.007
/1364557032000119616
/doi
/doi
/doi
/TMI.2019.2914400
/978-3-319-
/BF02510968
/j.me-dia
/IS-BI
/s11517-008-0353-8
/TBME.2005.857665
/
/10255842.2010
/
/978-3-030-
/hrt.2007.125039
/
/21681163.2018
/j