Ethical Approval
This article does not contain any stud-ies
involving human participants per-formed
by any of the authors.
Informed Consent
None
THANKS
Travel and accommodation expenses of
this collaborative project between stu-dents
from Finland and Singapore were
supported and funded by the Finnish
Ministry of Education and Culture and
Finnish National Agency for Education.
References
Akagi M, Nakamura Y, Higaki T, Narita K,
Honda Y, Zhou J, Yu Z, Akino N, Awai K.
2019. Deep learning reconstruction im-proves
image quality of abdominal ul-tra-
high-resolution CT. European society
of Radiology, 29(11), 6163-6171.
Arksey H, O’Malley L. 2005. Scoping stud-ies:
towards a methodological framework.
International Journal of Social Research
Methodology, 8(1), 19-32.
Benz DC, Benetos G, Rampidis G, von Felten
E, Bakula A, Sustar A, Kudura K, Messer-li
M, Fuchs TA, Gebhard C, Pazhenkot-til
AP, Kaufmann PA, Buechel RR. 2020.
Validation of deep-learning image recon-struction
for coronary computed tomogra-phy
angiography: Impact on noise, image
quality and diagnostic accuracy. Journal
of Cardiovascular Computed Tomography,
14(5), 444-451.
Beregi J, Greffier J. 2019. Low and ultra-low
dose radiation in CT: Opportunities and
limitations. Diagnostic and Interventional
Imaging, 100(2), 63-64.
Boedeker, K. 2019. AiCE Deep Learning Re-construction
: Bringing the power of Ul-tra-
High Resolution CT to routine imaging,
https://global.medical.canon/publication/
ct/2019WP_AiCE_Deep_Learning (25
Nov 2020).
Choy G, Khalilzadeh O, Michalski M, Do S,
Samir A, Pianykh O, Dreyer K. 2018. Cur-rent
Applications and Future Impact of
Machine Learning in Radiology. Radiolo-gy,
288(2), 318-328.
Committee on Publication Ethics (COPE)
Core Practices, https://publicationethics.
org/core-practices/ (4 May 2021)
Den Harder A, Willemink M, Budde R, Schil-ham
A, Leiner T, de Jong P. 2015. Hybrid
and Model-Based Iterative Reconstruction
Techniques for Pediatric CT. American
Journal of Roentgenology, 204(3), 645-
653.
Ehman E, Guimarães L, Fidler J, Takahashi
N, Ramirez-Giraldo J, Yu L, Fletcher J.
2012. Noise Reduction to Decrease Radia-tion
Dose and Improve Conspicuity of He-patic
Lesions at Contrast-Enhanced 80-kV
Hepatic CT Using Projection Space Denois-ing.
American Journal of Roentgenology,
198(2), 405-411.
Ehman E, Yu L, Manduca A, Hara A, Shiung
M, Jondal D, Fletcher J. 2014. Methods
for Clinical Evaluation of Noise Reduction
Techniques in Abdominopelvic CT. Radio-
Graphics, 34(4), 849-862.
Furterer S. 2014. Appropriate Use of CT Scan
in the Emergency Department BT - Lean
Six Sigma Case Studies in the Healthcare
Enterprise. In S. Furterer, & S. Furterer
(Ed.). London: Springer London, 203-227.
Geyer L, Schoepf U, Meinel F, Nance J, Bas-tarrika
G, Leipsic J, De Cecco C. 2015.
State of the Art: Iterative CT Reconstruc-tion
Techniques. Radiology, 276(2), 339-
357.
Greffier J, Hamard A, Pereira F, Barrau C,
Pasquier H, Beregi J, Frandon J. 2020. Im-age
quality and dose reduction opportuni-ty
of deep learning image reconstruction
algorithm for CT: a phantom study. Euro-pean
Radiology, 30(7), 3951-3959.
Hara A, Paden R, Silva A, Kujak J, Lawder H,
Pavlicek W. 2009. Iterative Reconstruction
Technique for Reducing Body Radiation
Dose at CT: Feasibility Study. American
Journal of Roentgenology, 193(3), 764-
771.
Higaki T, Nakamura Y, Zhou J, Yu Z, Ms T,
Tatsugami F, Awai K. 2020. Deep Learning
Reconstruction at CT. Academic Radiolo-gy,
27(1), 82-87.
Higaki T, Nishimaru E, Nakamura Y, Tatsuga-mi
F, Yu Z, Verleker A, Hills V. 2018. Ra-diation
dose reduction in CT using Deep
Learning based Reconstruction ( DLR ): A
phantom study. Ecr 2018, C-1656
Hsieh J, Liu E, Nett B, Tang J, Thibault J.-B,
Sahney S. 2019. A new era of image re-construction:
TrueFidelity TM Technical
white paper on deep learning image re-construction,
https://www.semanticschol-ar.
org/paper/A-new-era-of-image-recon-struction%
3A-TrueFidelityTM-Hsieh-Liu/
d0f8e1e8868e9f8ed22ad5972420139551552e91
(25 Nov 2020)
Kliininen Radiografiatiede 2021 11
/
/publicationethics
/www.semanticschol-ar